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1 Project Description
The American Housing Survey (AHS) is a biannual, longitudinal survey of housing units designed
by the U.S. Department of Housing and Urban Development and administered by the U.S. Census
Bureau. The sample of housing units is drawn from residential units in the United States and is
designed to provide statistics that represent both the country as awhole and its largestmetropolitan
areas.

As with many federal surveys, the AHS has experienced declining response rates, requiring increas‐
ing amounts of time and effort to reach the 80 percent response rate preferred by the Office of
Management and Budget. In particular, response rates have declined from approximately 85 per‐
cent in the 2015 wave to 80.4 percent in the 2017 wave to 73.3 percent in the 2019 wave.

As response rates decline, issues pertaining to data quality become increasingly important. While
not indicative of bias in itself, a lower response rate can raise concerns that there is a correlation
between the likelihood of nonresponse and survey items of interest. Nonresponse bias not only
can diminish data quality by providing an inaccurate picture of the world, but also can diminish data
quality by creating an over‐reliance on post‐survey adjustment procedures that add to the noise
around population estimates even when recovering population estimates that are accurate. This
project seeks to experimentally test the use of targeted monetary incentives to improve the quality
of AHS data and to learnwhichmethods of allocating incentives aremost cost effective at increasing
data quality.

When referring to nonresponse bias, we mean a divergence between a population quantity of key
interest—such as the true proportion of U.S. adults living in severely inadequate housing—and its
sample estimate, which arises due to systematic differences between those who do and do not
respond to a survey. In theory, it is possible to adjust survey estimates to account for differen‐
tial nonresponse so that sample estimates converge to population quantities, and bias is removed.
To account for potential nonresponse bias, the AHS calculates a noninterview adjustment factor
(NAF) that reweights for nonresponse within cells defined by metropolitan area, type of housing
unit, block groupmedian income, and area‐level rural/urban status. In principle, adjustments such as
this, along with raking,1 should reduce or even remove the inferential threats posed by nonresponse
bias. However, there is no guarantee that the model used for bias‐adjusted estimates contains all
the information it needs. Moreover, the weights used in such bias adjustment schemes typically
increase variance in estimates: they essentially require units in grid cells with a lot of missingness
to “represent” more unobserved units than those in grid cells with less missingness.

Furthermore, our preliminary analyses leave open the possibility that the raking and nonresponse
adjustment factors currently employed to reweight AHS estimates do not ensure convergence with
population quantities. In a separate memo on nonresponse bias in prior rounds of the AHS (see
attached), we found two sets of systematic differences—nonrandom attrition from the panel; differ‐
ences between sample quantities and known population quantities—that persist in spite of weight‐
ing meant to account for nonresponse bias. For the first, as an example, a key outcome the AHS
measures is housing inadequacy. Among units where an interview was successfully conducted dur‐

1. The AHS raking procedure, as implemented in the 2019wave, is described in Section 3.4 of (U.S. Census Bureau and
Department of Housing and Urban Development 2020). Broadly, this involves using “control totals”—or known estimates
of housing and population totals from other sources—to adjust the weights on AHS respondents so that the AHS sample
estimate of the housing or population characteristic moves closer to the control/independent estimate. Since moving
sample estimates closer to control/independent estimates on one attribute (e.g., number of vacant housing units in a
state) can mean sample estimates move further from population estimates for other attributes (e.g., number of persons
aged 65+ in a state), the AHS defines a priority order for adjustment.
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ing the 2015 wave of the AHS, some dropped out due to nonresponse in 2017. Reweighted esti‐
mates suggest 12 percent of those who stayed in the panel in 2015 and 2017 had problems with
rodents. Looking at those housing units that appeared in 2015 only to drop out in 2017, however,
only 9 percent had problems with rodents—in other words, a key measure of housing quality ap‐
pears correlated with differential panel attrition. For the second, we found the AHS bias‐adjusted
estimate of the proportion of householders in the U.S. who own their home outright (without a
mortgage or loan) in 2015 is seven percentage points lower than the corresponding proportion in
the 2010 Decennial census count. Attributing these divergences to nonresponse bias with com‐
plete certainty is a challenging task since, by definition, we cannot measure the attributes of units
who do not respond. However, the evidence presented in the nonresponse bias memo suggests
that, in addition to adjusting sample estimates on the backend, improving sample composition on
the frontend would increase the accuracy of estimates.

The purpose of this project is to determinewhether and how the provision of cash incentives prior to
contact with Census Bureau staff can reduce nonresponse bias in (adjusted and unadjusted) sample
estimates. Furthermore, this test of incentives is intended to generate actionable evidence on the
optimal way to target incentives—both howmuch and to whom—so as to maximize data quality and
cost effectiveness.

Our intervention consists of sending cash to potential respondents sampled as part of the Integrated
National Sample of the 2021 American Housing Survey. The cash was delivered inside an envelope
containing a letter reminding the potential respondent about the survey. This letter was sent both
to treatment and to control respondents, albeit with a slight wording change that mentions the
incentive in the treatment letter and not in the control.

While many studies of incentives randomize differing amounts as does ours, a key innovation of
this study is to randomize the method through which incentives were allocated. In one randomly‐
selected half of the sample, incentives were provided completely at random. In the other half, incen‐
tives were deterministically provided to the respondents estimated to have the highest likelihood
of not responding. The method for estimating propensity to respond is described in greater detail
in Appendix Section 5.1.

Because the very method used to allocate incentives is randomized, we can estimate the causal ef‐
fect of using a propensity‐determined versus a propensity‐independent allocation method. In this
document, we refer to the variable that assigns respondents to either of the two incentive alloca‐
tion methods as T, for “targeting.” When T = 1, the potential respondent receives the incentive
allocation they would receive if propensity‐determined allocation were used for the whole sample,
and when T = 0, the potential respondent receives the incentive allocation they would receive if
incentives were assigned completely at random.

Conditional on being allocated any incentive, potential respondents are randomly assigned to an
amount of 2, 5, or 10 dollars. We denote this variable in this document using A, for amount.
Appendix Section 5.2 describes the randomization procedure and justification for the incentive
amounts. Table 1 describes the sample size in each condition, with N = 86, 017 in the overall
sample.
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Table 1: Sample sizes per condition

Random assignment of T
(incentive allocation method)

Propensity‐Independent (50%) Propensity‐Determined (50%)
N = 43,009 (50%) N = 43,008 (50%)

Random assignment of A
(dollar amount received)

$0 $2 $5 $10 $0 $2 $5 $10
30,107 3,225 3,225 6,452 30,107 3,225 3,225 6,451
70% 7.5% 7.5% 15% 70% 7.5% 7.5% 15%

2 Preregistration details
This Analysis Plan will be posted on the OES website at oes.gsa.gov before outcome data are ana‐
lyzed.

3 Hypotheses
The research design is tailored to address a family of questions on how different kinds of incentive
schemes affect nonresponse bias (a measure of data quality) and the effort to achieve that reduction
in bias. Here, we outline the general sets of hypotheses and in Section 4.8 we discuss the estimands
for each hypothesis and estimation strategy in greater detail.

3.1 Primary hypothesis: impact on nonresponse bias
Defining nonresponse bias as the expected difference between non‐adjusted AHS sample estimates
and their corresponding population statistics, we ask:

• To what degree does allocating the entire incentive budget to respondents deemed at highest
risk of nonresponse reduce nonresponse bias, as compared to a purely random allocation of
incentives?

We hypothesize that the allocation of incentives to those deemed most at risk of nonresponse will
reduce nonresponse bias.

3.2 Secondary hypothesis: measures of effort to achieve data quality
While the main focus of the experiment is improving the quality of sample data, a secondary ques‐
tion of interest—holding data quality constant—is to understand the extent to which an incentive
changes the level of effort required to achieve that data quality. We investigate the following ques‐
tion about the experiment’s impact on the degree of effort it takes the survey to achieve high sample
quality:

• What is the relationship between the amount of the incentive provided and the probability of
nonresponse and number of contact attempts? Are there diminishing returns to the effective‐
ness of incentive amounts?

We hypothesize that targeting incentives to those at risk of nonresponsemay not only lead to higher
quality data (reduce nonresponse bias) but also may decrease the effort required to obtain that
data. Focusing on incentive magnitudes, we further hypothesize that incentive amounts exert a
monotonic positive effect on the probability of response and a monotonic negative effect on the
number of attempts and time spent on a case. We expect that there may be diminishing returns to
larger incentive amounts.
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4 Data and data structure
4.1 AHS internal use files
Throughout the analyses, we primarily use the AHS internal use files (IUF) that contain information
about both responders and nonresponders. We focus on the AHS national sample, a nationally‐
representative biannual panel. The AHS national sample can be classified into four exclusive cate‐
gories: regular occupied interviews, in which the usual occupants of a unit are interviewed; a vacant
interview, in which the owner, manager, janitor, or knowledgeable neighbor (if need be) of an empty
building is interviewed; a “usual residence elsewhere” (URE) interview, for units whose occupants
all usually reside elsewhere; and a noninterview. In the majority of analyses, we focus on contrasts
between noninterviews (nonresponse) and the other three interview types (response).

Here, we review the main data sources. Unless otherwise specified, we use data from the 2021
AHS:

1. Main IUF file for completed interviews: for each respondent, this includes values for key at‐
tributes measured in the AHS (e.g., housing quality; demographic characteristics of the house‐
holder) as well as J flags for whether a particular variable has been imputed. This is used for
the primary version of analysis one in Section 4.8, which focuses on the effect of the allocation
method (propensity‐determined versus independent) on nonresponse bias.

2. Sampling frame and bridge files: while the first data only contains values for respondents,
these files, which vary across waves, contain sampling frame attributes known from addresses
such as county‐level rurality and housing type. We plan to use these data for (1) an alternate
version of analysis one that examines characteristics measured in both respondents and non‐
respondents and (2) the exploratory analysis of the impact on variance.

3. Contact history file (CHI): for each wave, we not only have a unit’s response status but also
have metadata on the field responders’ attempts to locate and interview the unit. These fields
include the number of times a unit was contacted (which can be several even among those
who eventually respond), the dates between contact attempts, and other measures of the
effort that went into trying to convert nonresponders into responders. We use these data for
analysis two, whichmeasures the impact of the propensity‐determined allocation onmeasures
of effort in addition to Yes or No response status.

4.2 AHS survey design and weighting
For the AHS national sample, the AHS uses a four‐stage weighting procedure to generalize from the
sample to the target population.2

In turn, there are three options for how we can use the weights from different stages of the adjust‐
ment process. These options correspond to two distinct quantities we report for different analyses:
point estimates and measures of variance. They also reflect the fact that there are two sources of

2. First, analysts calculate a “base weight” (BASEWGT) that adjusts for the inverse probability that a unit is selected into
the sample. Second, analysts apply so‐called “first stage factors” (FSFs) that calibrate the number of units selected in each
primary sampling unit strata to the number of housing units in these strata as measured using an independent Census
Bureau estimate. The third stage involves a “noninterview adjustment factor”(NAF) that uses five variables to define
cells for noninterview adjustment: Census division; type of housing unit; type of CBSA; block group median income
quartiles; and urban rural status. The final step is applying what are called “ratio adjustment factors” (RAFs) to the weights
through raking, which is designed to produce weights that lead to estimates with lower variance by calibrating weighted
outputs to “known estimates of housing units and population from other data sources believed to be of superior quality
of accuracy”(U.S. Census Bureau and Department of Housing and Urban Development 2018, 8).
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variability in estimates from our experiment: (1) variability from the AHS sampling procedure and
(2) variability from the experimental procedure. The options are:

1. Report estimates without any weighting: this would correspond to point estimates that repre‐
sent sample rather than population quantities, since they do not account for the base weights
and first stage factors (FSFs) that adjust for the sampling process. Theseweights are important
for generalizing estimates to the survey’s target population: a representative sample of the
universe of U.S. residential housing units.3 For this reason, all point estimates will be weighted
(options two and three).

2. Report estimates weighted by FSFs but variance estimates that only reflect variability from
the experimental procedure: in these results, the point estimates correspond to population
point estimates but the variance on those point estimates only accounts for variability from
the experimental procedure rather than variability from the AHS sampling procedure. Our
main inferences will be based on this measure of variance.

3. Report estimates weighted by FSFs and variance estimates reflect both variability from the
experimental procedure and variability from the AHS sampling procedure: we discuss this
analysis in Section 4.11. This variance estimation involves using the FSFs and the 160 replicate
weights corresponding to that weight.

4.3 Imported variables
In exploratory analyses, we may use 2020 tract‐level American Community Survey (ACS) 5‐year
estimates to estimate the impact of propensity‐determined allocation on contextual attributes.4
Otherwise, none of the data is imported from external sources.

4.4 Transformations of Variables and Data Structure
We describe specific variable transformations when outlining howwe define each outcome variable
in Section 4.8. We do not anticipate changes to the data structure beyond the aggregations we
performed for predictive modeling that we discuss in Section 5.1.

4.5 Data Exclusion
We do not anticipate excluding any data.

4.6 Treatment of Missing Data
We do not anticipate any missing data for the following outcomes: (1) sampling frame variables,
(2) nonresponse (Y/N), and (3) number of contact attempts. For observed attributes among respon‐
dents (e.g., homeownership), we will treat missing as a distinct level for categorical variables and for
continuous variables, will conduct mean imputation.

4.7 Statistical Models & Hypothesis Tests
4.7.1 Treatment conditions and probability weights
As described in Appendix Section 5.2, there are three variables that are randomly assigned: Ti ∈
{0, 1} is an indicator for whether the unit receives the allocation they would have received under

3. More specifically: “The universe of interest for the AHS consists of the residential housing units in the United States
that exist at the time the survey is conducted. The universe includes both occupied and vacant units but excludes group
quarters, businesses, hotels, and motels. Geographically, the survey covers the 50 states and the District of Columbia
(D.C.)”(p. 3 U.S. Census Bureau and Department of Housing and Urban Development 2020).
4. These will be available in March 2022.
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the Propensity‐Determined (versus Propensity‐Independent) method; Zi ∈ {0, 1} is an indicator
for whether the individual is assigned to receive any incentive amount in the allocation used; Ai ∈
{0, 2, 5, 10} is the dollar amount allocated to each potential respondent.

The assignment procedure generates a correlation between the predicted probability of nonre‐
sponse and the probability of receiving an incentive. This correlation could cause bias if not ac‐
counted for, as it will result in the overrepresentation of certain covariate profiles and types of
respondents in the incentive group. To correct for this issue, we weight units by the inverse of their
propensity to be sent an incentive of any kind in any analyses that involve assessing relationships
between incentive receipt and outcomes.

Specifically, since T is independent, for any given individual the probability of assignment is given
by:

Pr(Zi = 1) = Pr(Ti = 1)Pr(Zi = 1 | Ti = 1) + Pr(Ti = 0)Pr(Zi = 1 | Ti = 0).

For the 30% (m/n) of units with the lowest propensity to respond,5 (who are allocated an incentive
under targeting), this evaluates to 0.5× 1 + 0.5× 0.3 = 0.65. For the 70% of units with the highest
propensity to respond (who are not allocated an incentive under targeting), this evaluates to 0.5 ×
0 + 0.5× 0.3 = 0.15. Thus, there are four possible values of a treatment assignment probability πZ

i,z

(where z indicates a treatment status for respondent i):

1. For j low propensity to respond (high propensity to nonrespond) individuals:

• Assigned to treatment (any incentive): πZ
j,1 = 0.65

• Assigned to control (no incentive): πZ
j,0 = 1‐0.65 = 0.35

2. For k high propensity to respond (low propensity to nonrespond) individuals:

• Assigned to treatment (any incentive): πZ
k,1 = 0.15

• Assigned to control (no incentive): πZ
k,0 = 1 ‐ 0.15 = 0.85

As a result, it is possible to observe every unit in every treatment condition, albeit with differing
probabilities. To obtain unbiased estimates of the average treatment effect of receiving incentives,
we downweight those who are overrepresented in incentive or no‐incentive groups, and upweight
those who are underrepresented, using

1

πZ
i,z

, the inverse propensity weight (IPW).

4.8 Confirmatory Analyses and Statistical Models
We plan to conduct three confirmatory analyses.

4.8.1 Analysis one: effect of propensity‐determined allocation on nonresponse bias
This analysis focuses on key attributes of housing units, households, and areas measured by the AHS
in 2021. This list, developed based on the nonresponse bias analysis we attach in the appendix and
conversations with Census, will include the following variables from the IUF or sampling frame:6

1. Own house (no; yes with mortgage/loan; yes with no mortage/loan)

5. Or conversely, the highest propensity to not respond.
6. These variables derive from three sources. First are variables where 2015 AHS estimates deviated significantly

from 2010 Decennial Census estimates (Figure 1 in nonresponse bias summary memo). Second are variables that are
predictive of panel attrition using a large penalty term from a LASSO model (Figure 15 in the nonresponse bias summary
memo). Third are sampling frame variables used in the nonresponse adjustment process.
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2. Average household size

3. White alone (householder)

4. Age of householder

5. Rodents

6. Mold

7. Sampling frame: Census Division

8. Sampling frame: HUD‐assisted unit (as of 2013)

9. Sampling frame: 2013 Metropolitan Area (county‐level; principal city, nonprincipal city, mi‐
cropolitan area, non‐CBSA area)

10. Sampling frame: type of housing unit (house/apt; mobile home; other)

Conducting individual tests for each outcome would pose a multiple comparisons problem. There‐
fore, we conduct an omnibus test of the null hypothesis that the (conditional) difference inmeans be‐
tween the propensity‐determined and propensity‐independent samples is zero across all outcomes.

Specifically, we conduct an F‐test comparing a model in which the allocation method indicator, T , is
regressed on pair‐level block indicators and one inwhich T is regressed on pair‐level block indicators
and the list of outcomes above.

The F‐test can be interpreted as a test of the null hypothesis that the true coefficients on the out‐
comes are all equal to zero. Rejection of the null hypothesis therefore implies that at least one of
the outcomes is imbalanced with respect to T. Thus, we are able to run one test to understand
whether the first moments of the distributions of any of the outcomes are different between the
two different allocation methods.

Additional notes on estimation and inference are:

• We will conduct two versions of this analysis

– Main analysis: this analysis is restricted to outcome variables from the list above that we
only observe among respondents. Therefore, for this analysis, we subset to the respon‐
dent sample. The comparison is then between values for respondents under T = 1 and
values for respondents under T = 0.

– Secondary analysis: this analysis is restricted to outcome variables from the list above
thatwe observe among both respondents and nonrespondents, since they represent sam‐
pling frame variables known prior to response. If the treatment changes values for these
variables, it potentially reduced nonresponse bias.

• We will report the outcome‐specific differences in means graphically but will not conduct
inference on individual outcomes

• Similarly, due to different definitions across surveys and delays in the 2020 Decennial census,
we will not try to systematically determine which group’s values for a variable are more similar
to those from a benchmark/target population. For instance, if our comparison ofmeans shows
that 60% of the control group owns their homes, while 63% of the treatment group owns their
homes, wemay contextualize these differenceswith reference to the national homeownership
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rate measured in the Census (∼ 65%). But our tests assess the between‐group differences and
not which group is closer to some external, benchmark value.

• We do not reweight using the IPWs discussed in Section 4.7.1 since T is independent of units’
covariates and potential outcomes.

• We chose the F‐test for two reasons. First, while the F‐test only captures differences in the
sample means (the first moment; e.g., the % of household heads who are White alone in the
treatment and control groups), and not differences in quantities like the variance, our main
focus is on differences in the sample means. This stems in part from the fact that most of the
above variables we will include in the F‐test are binary indicators (e.g., White alone or not;
Mold or not) where the proportions reflect both the mean and the variance.7 Second, while
some raise concerns about the asymptotic properties of likelihood ratio tests in small samples
(Hansen and Bowers 2008), our sample size is large enough (∼ 84,000) for these properties
to reasonably hold.

4.8.2 Analysis two: effect of propensity‐determined allocation on response rate and effort
This analysis focuses on whether propensity‐determined allocation improves two outcomes:

1. Response rate: we define this outcome as a binary variable where either a unit is an occupied
interview (responder) with sufficient completeness to remain in the final IUF data file or not.

2. Contact attempts: we define this outcome as a continuous variable based on the CHI data
and aggregating contact attempts across all modes.8

To estimate:

• We regress each outcome on pair‐level block indicators and T

• Similar to the first analysis, we do not use IPWs since T is independent of units’ covariates and
potential outcomes

• For inference: we conduct randomization inference withm = 5, 000 replicates and use a two‐
tailed p value.

4.8.3 How we will judge different patterns of results for analysis one and analysis two
Analysis one measures the impact of T on data quality. Analysis two measures the impact on the
effort required to collect that data. We will interpret the combined results as follows:

1. T = 1 increases response rate and leads to different sample composition: the treatment
increased response rate and may have reduced nonresponse bias.

2. T = 1 increases response rate but does not lead to different sample composition: the treat‐
ment increased response rate but had no detectable impact on nonresponse bias.

3. T = 1 does not increase response rate but does lead to different sample composition: the
treatment changed the sample composition despite not changing the response rate.

7. There are some continuous attributes like age of householder, for which we might care about differences in the
distribution of values even if there are no treatment‐control differences in the mean. However, these are the minority of
the list.
8. Another measure of effort is in‐person contact attempts. We focus on all modes since it reflects phone‐based effort

as well.
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4. T = 1 does not increase response rate and does not lead to different sample composition:
the treatment neither increased the response rate nor improved nonresponse bias.

4.8.4 Analysis three: diminishing returns
This analysis will test for the presence of an inflection point in the relationship between dollars of
incentives provided and probability of response and number of contact attempts. In particular, we
are interested in whether incentives exhibit diminishing returns. Figure 1 illustrates hypothetical
relationships between dollar amounts and response probabilities (dotted lines), alongside the linear
relationships that will be estimable from the data, given the allocation of four incentive amounts
($0, $2, $5, and $10).

Figure 1: Example dose‐response curves for different subsets of respondents

To do, we use the following estimation procedure, repeated across two outcomes (Y/N response; #
of contact attempts):

1. Test for diminishing returns from $0 to $2 versus $2 to$5: we use a linear hypothesis test
where the left hand side (LHS) represents the effect of increasing incentives from $0 to $2
and the RHS represents the effect of increasing the incentives from $2 to $5: 3× 2− 3× 0 =
5× 2− 2× 2

2. Test for diminishing returns as we increase incentive from $2 to $5 and $5 to $10: we use
a linear hypothesis test where the left hand side (LHS) represents the effect of increasing
incentives from $2 to $5 and the RHS represents the effect of increasing the incentives from
$5 to $10: 5× 5− 5× 2 = 3× 10− 3× 5

Since these regressions involve A (randomized incentive amount) rather than T , we will employ
the inverse of the probability weights described in Section 4.7.1, because receiving any incentive
amount is correlated with units’ potential outcomes.

To estimate:

1. We will use lh_robust within estimatr and car to specify the linear hypothesis tests

2. We will judge inference as p < 0.05
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3. We omit one other other potential comparison—$0 to $2 versus $5 to $10—because (1) we
assume the relationship is monotonic (if nonlinear), such that the response from $5 to $10 ≥
$5 to $2 ≥ $2 to $0 and (2) to reduce the total number of tests.

4.9 Exploratory Analyses and Statistical Models
4.9.1 Impact on effective sample size
As discussed earlier, there are two ways to address biases that arise from nonresponse:

1. Interventions to increase response rates/reduce nonresponse bias prior to data processing

2. Conditional on a given response rate, and during data processing, weighting to adjust for bias

One advantage of the first approach over the second is that weights, depending on their magnitude
and distribution across units, increase the variance of sample estimates. We can summarize this
issue using the concept of the AHS’ design effect, or understanding how departures from simple
random sampling and a perfect response rate affect sampling error in estimates.

To examine the impact of the experiment on variance in estimates, we take the following approach:

1. Split the data into treatment and control and construct separate nonresponse adjustment
weights: split the data into two groups—T = 1 and T = 0—and loosely replicate the process
that AHS survey designers use to create weights that adjust for nonresponse. This process is
described in greater detail in Appendix 5.3.

2. Obtain a point estimate for impact of those weights on effective sample size: while one ap‐
proach to comparing theweights is to examine how they influence variance around a particular
statistic, another approach is to compare how they influence the effective sample size in each
group. For this, we use Kish’s approximate formula for computing effective sample size, cal‐
culating this value separately by group, where i indexes a respondent and w represents that
respondent’s weight created in step 1:

neff =
(
∑N

i wi)
2∑N

i w2
i

3. Find the difference in effective sample size between treatment and control: we want the
effective sample size to be as close to the nominal sample size as possible, so neff to be larger.
We can calculate the following difference, and hope to see a positive value if the treatment
improves the effective sample size, where neff,1 represents the treatment group randomized
to propensity‐determined incentives and neff,0 represents the control group:

Diff sizes = neff,1 − neff,0

4. Use randomization inference to judge statistical significance: the previous step results in a
point estimate of the difference in size. To judge whether this is statistically significant, we
will repeat steps 1 through 3 m = 5, 000 times permuting the treatment status to form a null
distribution of differences in effective sample sizes. The p value will be a two‐tailed test that
measures (1) finds the percentage of permuted test statistics≥ the observed test statistic; (2)
finds the percentage of permuted test statistics ≤ the observed test statistic; and (3) takes
the min of 1 and 2.
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4.9.2 Heterogeneous effects of treatment
Given a finite budget of incentives, a key goal is to target those incentives to those for whom the
incentive has the largest impact on whether they respond. For this, we shift from an estimand of
the average treatment effect of incentives to the conditional average treatment effect (CATE) for
each unit, or how the effect varies among units with different pre‐treatment attributes.

For this analysis, we:

• Focus on A (randomized incentives) and the contrast between any incentive and no incen‐
tive: our reason is that it makes more sense conceptually to think of units that have different
degrees of responsiveness to monetary incentives, rather than units with different degrees of
responsiveness to the propensity‐determined versus independent incentives. We collapse the
different incentive amounts for statistical power reasons and because we believe the mean‐
ingful distinction is between some and none.

• Restrict to respondents randomized to the propensity‐independent condition: while this re‐
striction reduces the sample size, estimating CATEs among the propensity‐determined condi‐
tion, even with reweighting by IPWs, risks results that (1) find significant “moderators” of the
treatment but that do so because (2) they were inputs to the nonresponse propensity scores
discussed in Section 5.1. To reduce this possibility, we restrict to respondents randomized to
the propensity‐independent incentive condition.

• Use machine learning (ML) methods to estimate CATEs using a high‐dimensional set of pre‐
treatment attributes: one approach to examining heterogeneous treatment effects is to use
theory to select specific attributes that moderate the effect: for instance, a respondent’s
household income could be correlated with whether financial incentives shifts their response.
Since we do not have strong a priori theory about what may moderate the effect, we will use
machine learning to estimate the CATE. The pre‐treatment attributes wewill use will be similar
to those used in the propensity score estimation (Appendix Section 5.1), including sampling
frame variables, lagged nonresponse status, and categorical variables with nonrespondents
set to a category of missing.9 We are not prespecifying the ML estimation method we will
use since certain methods may be more feasible than others within our computing environ‐
ment, but options include causal forest (Wager and Athey 2018) or metalearners for CATE
implemented in causalToolbox (Künzel, Sekhon, et al. 2019; Künzel, Walter, et al. 2019).10

4.10 Inference Criteria, Including Any Adjustments for Multiple Comparisons
In the sections above, we specified the inference procedure for each analysis. Wewill use p < 0.05 as
the threshold for statistical significance. We do not plan to adjust for multiple comparisons because
the number of tests remains small:

1. Analysis one: one omnibust test

2. Analysis two: two coefficients on T (one for response; another for contact attempts)

3. Analysis three: four linear hypothesis tests (two outcomes × two shifts in incentives)

9. We may also use ACS contextual data.
10. As described in (Künzel, Sekhon, et al. 2019), metalearners for the CATE involve two steps. First, the data is split into
treatment and control: in our case, any versus no incentive within the T = 0 propensity‐independent condition. Then, a
“base learner”–or standard binary classifier—is used to predict the conditional expectation of the outcomes in each group.
Finally, the algorithm finds the difference between the estimates in the treatment group and the estimates in the control
group.
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4.11 Robustness Checks
We plan to conduct two robustness checks.

First is re‐estimating analysis two with a cutoff date to account for the Census stopping rule. The
Census Bureau typically stops data collection once the target of an 80% response rate has beenmet.
If incentives had been targeted at areas rather than specific respondents, this would pose risks of
spillover effects—if we increase the response rate in area 1, then we may also decrease it in area 2
by reducing the need to collect more data there in order to achieve an 80% response rate. While
our main way of addressing this is that we targeted incentives at respondents rather than areas, we
will also work with Census to design a robustness check that:

1. Selects a stop date for when they devoted less effort to data collection due to response rates
approaching 80% (if relevant)

2. Re‐estimates effects as of or before the stop date

Second is to analyze the robustness of shifting from SATE to PATE. For the reasons discussed in
Section 4.2, it is important to check that results are robust to the larger variances from incorporating
the AHS sample selection and replicate weights. The main reason is that (1) the experiment may
have heterogeneous effects and (2) there may be overlap between the pre‐treatment attributes
used in the AHS sample selection process (e.g., HUD‐assisted as of 2013 or not) and pre‐treatment
attributes that effects are heterogeneous over. Therefore, examining robustness to the PATE may
be important.

This entails using the FSF weights discussed in Section 4.1, which adjusts for the sample selection
process but not for nonresponse bias, as well as the 160 replicate weights that correspond to that
variable. For main analyses 1 and 2, which do not require inverse‐propensity weighting, the pro‐
cedure is relatively straightforward: we estimate the main results, weighting by the FSF. We then
proceed through the 160 replicate weight vectors. At each vector, we rerandomize the treatment
1000 times, and employ the replicate weight as a weight in the regression. This provides 160,000
estimates of the PATE where the sharp null hypothesis of no effect for any unit is true. The p‐value
is calculated as the proportion of the 160,000 null estimates at least as large in absolute value as
the first estimate, obtained using the observed randomization and the FSF weights. For analysis 3,
which employs IPWs, we pre‐multiply the FSF and replicate weights by the IPW, and then repeat
the same set of steps as described for analyses 1 and 2.

DRAFT ‐ FOR INTERNAL USE
14



5 Appendix
The appendix is organized as follows:

• Section 5.1 describes the methods used for generating propensity scores that are used in the
propensity‐determined condition. These scores were generated regardless of a respondent’s
allocation to that condition.

• Section 5.2 describes the randomization process in greater detail.

• Section 5.3 describes the process for constructing the nonresponse adjustment factor (NAF)
weights that we use for our exploratory analysis of the impact of T on effective sample size.

5.1 Propensity estimation procedure
Here, we outline the procedure we used to estimate the propensity scores. These were generated
in winter of 2020 prior to the AHS 2021 fielding.

We used the following general process to (1) train the model, (2) validate the model, and (3) select
the best‐performing model.

1. Begin with the “long‐form” AHS data where each unit is repeated across four waves: we
observe response outcomes for the 2015, 2017, and 2019 waves; we are trying to predict
response outcomes for the 2021 wave:

id wave respond contact attempts acs % white ...
1 2015 1 2 40
1 2017 0 15 42
1 2019 1 1 45
1 2021 ?
2 2015 1 1 10
2 2017 1 1 11
2 2019 1 2 10
2 2021 ?
3 2015 0 10 80
3 2017 1 5 80
3 2019 0 3 81
3 2021 ?
...

2. For features, pull out the 2015 and 2017 waves and aggregate values so that each unit has
one row: we auto‐generated three aggregations of either numeric or dummified variables:
min (for the 0, 1 dummies, whether ever 0), max (for the 0, 1 dummies whether ever 1), and
mean (for the 0, 1 dummies, percent 1). Auto‐removal of highly‐correlated features using
Caret often removed the max and min, so we retained the mean except for the explicit lagged
nonresponse features:

Feature matrix:
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id wave mean contact attempts mean acs % white
1 2015/2017 8.5 41
2 2015/2017 1 10.5
3 2015/2017 7.5 80
...

3. Augment that 2015/2017 feature matrix with the unit’s response status in the 2019 wave

Feature matrix with label:
id wave mean contact attempts mean acs % white 2019 response
1 2015/2017 8.5 41 1
2 2015/2017 1 10.5 1
3 2015/2017 7.5 80 0
...

4. With this combined feature/label matrix, split the data into an (1) 80% training set (with
five folds then used for cross‐validation to tune hyperparameters) and (2) 20% validation set:

Feature matrix with label and train/test status:
id wave mean contact attempts mean acs % white 2019 response Status Fold
1 2015/2017 8.5 41 1 Train 1
2 2015/2017 1 10.5 1 Test NA
3 2015/2017 7.5 80 0 Train 4
...

5. After estimating/tuning themodels in the training set, evaluate the accuracy in the 20% held‐
out set using the metrics we discuss in Section 5.1.6

6. Finally, for all units and (1) using the best performing model, and (2) an updated feature
matrix to which the 2019 values are added/aggregated, predict nonresponse in 2021 to
generate the η̂i used in the field experiment:

Feature matrix now including 2015, 2017, and 2019 and predicting 2021 nonresponse :
id wave mean contact attempts mean acs % white Predicted 2021

nonresponse
1 2015/2017/2019 6 42.3 0.22
2 2015/2017/2019 1.3 10.3 0.43
3 2015/2017/2019 6 80.3 0.87
...

Figure A1 summarizes this process visually.
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Figure A1: Process for prediction and validation

Estimation data containing all sampled
units’ 2015 and 2017 features (aggregated
so one prediction per unit)

Use 80% sample (N = 67, 136) to train model
with 162 features

to predict 2019 nonresponse;
select hyp. via CV

Validate on 20%
held out set (N =
16, 783)

Select model that
optimizes recall (GBM)

Fit top model to data containing training units’ 2015,
2017, and 2019 features (aggregated so one prediction
per unit)

Use that model
to predict 2021
nonresponse

Here, we provide additional details on each step.

5.1.1 Label definition
In turn, there are a variety of outcomes we could predict corresponding to different types of nonre‐
sponse.

Noninterviews are split into three types:

1. Type A noninterviews (focus of our prediction): these occur when a regular occupied inter‐
view or usual residence elsewhere interview fails, usually because the respondent refuses, is
temporarily absent, cannot be located, or presents other obstacles (such as language barriers
the field staff are unable to overcome).

2. Type B and Type C noninterviews: each of these pertain to failures to interview someone
about a vacant unit. If units are ineligible for a vacant interview during the attempt, but may
be eligible later, they are classified as Type B noninterviews—for example, sites that are under
or awaiting construction, are unoccupied and reserved for mobile homes, or are occupied in
some prohibited manner. Type C noninterviews are ineligible for a vacant interview and will
remain so, for example, because they have been demolished or removed from the sample.

Because we were focused on nonresponse to target person‐directed incentives, which do not corre‐
spond to vacant interviews, we define the primary label as follows:

• Nonresponder: unit is a type A noninterview for any reason (so not only includes refusal but
also not at home, language issues, etc.)

• Others: unit is either a responder (the vast majority) or a vacant noninterview.

5.1.2 Prediction methods we compared
5.1.3 Flexible binary classifiers
Wefit a series of binary classifiers shown in FigureA3. With the exception of the neural network, the
classifiers are tree‐based classifiers. At its core, a tree‐based classifier is an algorithm that is looking
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to find combinations of attributes within which there are only responders or only nonresponders.
Starting with the simplest version—a decision tree—imagine we start with two features: the Census
region in which a unit is located and the percentage of households with a high school education
or less. The classifier might first find that areas where fewer than 10 percent of households have
HS education or less have units that are more likely to respond, creating a split at that value. The
“tree” has its first “branch,” with one group of people at the end of the “fewer than 10 percent”
fork and another group of people at the “greater than 10 percent” fork. Now suppose that, among
the first group, one region had proportionally many more responders than the other, but among the
second group, region does not seem tomake a difference. In that case, there will be a second branch
between high‐ and low‐responding regions among those in areas where fewer than 10 percent of
people have a HS diploma, but no such split among those who live in the areas with more than
10 percent of people with HS diplomas. The maximum depth parameter constrains the number of
splits and branches our tree can have.

Chance variation can lead to very idiosyncratic trees—the classifier tends to “overfit” to the data,
meaning that its particular set of branches and splits will not do a good job of sorting responders
from nonresponders in other samples. Random forest models (RF) are a solution to this problem
that generalize the idea of decision trees. The idea is to fit many hundreds of decision trees (a
forest) using two sources of random variation. One is random samples of the data with replacement;
another is random subsets of the features used for prediction—so, for instance, rather than including
all ACS features in a particular tree, one tree might have percent renters and racial demographics;
another percent owners and racial demographics.

Finally, we employ gradient‐boosting models (GBM). This is an ensemble classifier—each takes a series
of shallow decision trees (“weak learners”). Adaptive boosting starts with a weak learner and then
improves predictions over iterations by successively upweighting observations that were poorly
predicted in iteration i− 1. Gradient boost operates similarly, though instead of upweighting poorly
predicted observations, it uses residuals from the previous iteration in the new model.

Overall, these tree‐based classifiers aim to improve prediction by splitting and combining predic‐
tors. They generate what are called feature importances—measures of whether a predictor improves
prediction of nonresponse. Importantly, feature importance metrics are directionless: that is, they
measures how high up in a tree or how frequently an attribute is chosen, for example, irrespective
of the sign or size of the coefficient.

We tuned the hyperparameters for these estimates using within‐training set 5‐fold cross‐validation
based on the eventual accuracy metric we focus on: recall.

5.1.4 Baseline predictions
We then compared these flexible classifiers to two baseline methods:

1. Empirically‐informed guess: with this method, we predict a unit is a nonresponder with prob‐
ability equal to the empirically‐observed proportion of nonresponders (∼ 25% in the 2019
wave).

2. Simple rule based on past nonresponse: Figure A2 shows that past nonresponse behavior
can be predictive of response behavior in a focal wave — for instance, 4% of units are never
responders, and over 10% of units were nonresponders in two or more waves. In this baseline
comparison, we use a simple rule where we predict a unit is a nonresponder if they were a
nonresponder in the previous wave.
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Figure A2: Response patterns across waves The figure focuses on Type A nonresponse/response that refers
to behaviorally‐driven nonresponse. The sample contains approximately 84,000 occupied units that were
sampled for the panel starting in the 2015 AHS wave.
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5.1.5 Predictors
We fit these models to two sets of features, imputing missingness to the modal value for categorical
and mean for numeric:

1. AHS-only features from two sources:

(a) AHS sampling frame or master file variables. We use binary indicators created from
categorical levels of the variables that include the following:

i. DEGREE: this is a measure of area‐level temperature, and reflects places with hot
temperatures, cold temperatures, and mild temperatures based on the number of
heating/cooling days.

ii. HUDADMIN: this is a categorical variable based on HUD administrative data for a type
of HUD subsidy such as public housing or a voucher.

iii. METRO: this is a categorical variable for the type of metropolitan area the unit is lo‐
cated in (e.g., metro versus micropolitan) based on OMB definitions for 2013 metro
areas.

iv. UASIZE: this is a categorical variable for different sizes of urban areas when applica‐
ble.

v. WPSUSTRAT: this is a categorical variable for the primary sampling unit strata.

(b) Response and contact attempt variables from the previous waves. We exploit the lon‐
gitudinal nature of the data and use the unit’s past response‐related outcome to predict
its status in a focal wave:

i. total prior contact attempts (a numeric measure);
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ii. the total number of interviews in the prior wave (capturing respondents who needed
multiple interviews to complete participation);

iii. whether the unit was a nonresponder in the previous wave (binary).

2. AHS + ACS adds the following to the previous list:

(a) American Community Survey (ACS) 5‐year estimates of characteristics of the unit’s Cen‐
sus tract. We list these variables in Appendix Table ??. They were matched to waves as
follows so that the predictor is measured temporally prior to the outcome: 2015 wave
(ACS 5‐year estimates 2009‐2014); 2017wave (ACS 5‐year estimates 2011‐2016); 2019
wave (ACS 5‐year estimates 2013‐2018). They reflect race/ethnicity, educational attain‐
ment, and different housing‐related measures.

In the final model, we used the combined feature set.

After (1) dummifying all categorical variables, and (2) filtering out highly‐correlated predictors in the
estimation set, we ended up with 287 predictors. These predictors were:

1. Aggregations across the 2015 and 2017 waves for the purpose of predicting 2019 response
to select a best‐performing model

2. Aggregations across the 2015, 2017, and 2019 waves for the purpose of predicting 2021
response, the propensities we use for our field experiment testing targeting

5.1.6 Accuracy metrics
Finally, we evaluated the models in the held‐out 20% data, with labels taken from the year 2019
(with features only corresponding to the 2015/2017 waves to avoid “leakage” of future knowledge
into model estimation).

We examined three different outcomes of the predictions to calculate three separate evaluation
metrics in the held‐out or test fold. These are based on comparing a unit’s actual nonresponse
status to its predicted nonresponse status. Units can fall into four mutually exclusive categories,
and the evaluation metrics are different summary measures of the categories across the entire held‐
out fold:

1. TP : a nonresponder is correctly predicted to be a nonresponder

2. FP : a responder is incorrectly predicted to be a nonresponder

3. FN : a nonresponder is incorrectly predicted to be a responder.11

From there, we constructed three composite measures as ratios of the total number of units falling
into each category:

1. Precision: Total TP
Total TP+ Total FP

Among predictions of nonresponders, what proportion are ac‐
tually nonresponders;

2. Recall: Total TP
Total TP+ Total FN

Among actual nonresponders, what proportion do we correctly
predict to be nonresponders, as opposed to erroneously predicting that they are responders;

11. We do not need the fourth possible outcome of true negatives (correctly predicted responders), since TN = 1 −
TP − FN − FT .
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3. F1 Score: 2 ∗ Precision ∗Recall

Precision+Recall
Explained below.

If we have precision of 1, that means every time the model predicted a unit was a nonresponder, it
actually was. For example, if there are 50 nonresponders and 50 responders, as long as the model
predicts at least one nonresponder and no responders are falsely predicted to be nonresponders, it
will have precision of 1. If instead, every time themodel predicts a nonresponder that unit is actually
a responder, its precision will be 0.

For recall, we have to look at the subset of actual nonresponders. If there are two nonresponders in
a sample of 100 people, and the model predicts every single person in the sample is a nonresponder,
then 100 percent of nonresponders are correctly predicted to be nonresponders and the recall will
be 1. However, if the model does not predict any nonresponders to be nonresponders, its recall will
be 0.

We used the F1 Score as a third summary metric, since it helps us balance between finding all
nonresponders (high recall) while still ensuring that the model accurately separates out responders
from nonresponders (precision). Note that one measure may be more useful over another in other
applications. For an intervention targeting nonresponse bias, where there could be a higher cost
to failing to predict nonresponse (false negatives) than to wrongly predicting nonresponse (false
positives), we may prioritize models with high recall.

While what counts as a “good” F1 Score varies based on the context, generally, scores above 0.7
are considered evidence of a high‐performing model. To gain more intuition, consider the simplified
example in Table A1 of predictions for 20 units and where we use 0.75 as the cutoff for translating
a continuous predicted probability of nonresponse (NR) to a binary label of NR or respond (R). Our
precision is

3

3 + 1
= 0.75 since we have three true positives and one false positive. We could

increase our precision through raising the threshold forwhat counts as a true predicted nonresponse
to 0.8. However, doing so would hurt our recall which in the case of the example is

3

3 + 3
= 0.5

due to the presence of false negatives in the lower predicted probability range. The F1 Score is
less interpretable than either of these since it combines the two, but in this case, it would be 2 ∗
0.75 ∗ 0.5
0.75 + 0.5

= 0.6, which is lower than what we observed in our real results. The example also shows
that we can target our desired metric—for instance, capturing all nonresponders even if it leads to
some false positives—by changing the threshold for translating a continuous value (e.g., ŷ = 0.8)
into a binary prediction of nonresponse.

For the purposes of our field experiment, we selected the best model using recall. Our rationale
is that, for the purpose of targeting incentives, we want to focus more on minimization of false
negatives—respondentswe fail to provide incentives to butwhomight bemoved by that incentive to
respond—than on wasted incentives on false positives—units that would have responded anyways.
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Table A1: Illustration of the evaluation metrics: example predictions

ID Pred. ŷ Pred. ŷ True y error_category
continuous binary

1537 0.99 NR NR True pos.
1177 0.93 NR NR True pos.
1879 0.84 NR NR True pos.
1005 0.78 NR R False pos.
1187 0.72 R R True neg.
1034 0.71 R R True neg.
1159 0.60 R NR False neg.
1181 0.52 R NR False neg.
1071 0.49 R R True neg.
1082 0.47 R R True neg.
1603 0.44 R R True neg.
1762 0.33 R R True neg.
1319 0.29 R R True neg.
1359 0.24 R NR False neg.
1238 0.21 R R True neg.
1490 0.17 R R True neg.
1465 0.17 R R True neg.
1338 0.11 R R True neg.
1766 0.07 R R True neg.
1807 0.04 R R True neg.

5.1.7 Results and model selection
Figure A3 shows the comparative accuracy of the two types of models: (1) flexible classifiers that
predict behaviorally‐driven nonresponse12 and (2) baseline measures that correspond to the status
quo methods survey planners might use.

The graph shows that large gains in prediction come from the move from (1) no targeting (or just
guessing nonresponse status based on its empirical proportion) to (2) even simple, rule‐based tar‐
geting of using the nonresponse status in the previous wave to assume persistence in that behavior.
The least useful model (decision tree), which corresponds most closely to a rule‐based approach but
with model‐selected splits on features rather than the researcher‐selected feature of nonresponse
status, still substantially outperforms that simple rule (a gain in recall of 10 percentage points, or a
26.3% improvement over the baseline rate). We then see a series of models with smaller variations
in predictive accuracy. The best‐performing model is the ensemble classifier of a gradient‐boosting
machine (GBM), but random forest also performs well. These two models provide a 17 percentage
point improvement in recall over a simple rule of persistent behavior across waves, representing a
44.7% improvement over that rule‐based baseline.

12. In the remainder, we use the terms nonresponse and behaviorally‐driven nonresponse interchangeably to refer to
the Type A nonresponse we discuss in Section 5.1.1.
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Figure A3: Comparative accuracy in 20% held‐out set between two ways to predict nonresponse and tar‐
get incentives: (1) baseline targeting methods (random targeting; simple decision rule based on history of
nonresponse), (2) risk‐based targeting (either using a single model or ensemble method) The figure shows
recall metrics in the 20% held‐out set, with all features/predictors measured in 2015 and 2017 and the label
corresponding to 2019. We focus on recall because the goal of risk‐based targeting is to provide incentives to
all potential respondents who may be swayed by those incentives, and we are more concerned with minimiz‐
ing false negatives (finding all potential nonrespondents) than minimizing false positives (wasted incentives).
This prioritization of recall over precision/other metrics may vary based on the size of incentive targeted.

0.48

0.54

0.54

0.55

0.52

0.51

0.24

0.38

Guess label
(prob = prob nr)

Nonrespond
previous wave

Decision tree

Stacking

Neural net

Boosted glm

Random
forest

Grad.−boost
machine

0.0 0.2 0.4 0.6
Recall

(use 2015 and 2017 waves
to predict held−out 2019 response)

Baseline
Model

Focusing on GBM, the best‐performing model, useful is to examine how the metric of recall (1) breaks
down into different categories of errors and (2) compares to the simple, rule‐based prediction of
previous nonresponse status. We see two observations:

1. Why GBM performs better than that rule: GBM is more accurately able to mitigate against
false positives. Most notably, when we assume that a respondent’s previous response status
persists into the next wave, we have substantially higher rates of people who we predict as
nonresponders but who actually respond (representing potentially‐wasted incentives in the
targeting framework). The more flexible classifier that weights not only nonresponse history
but other attributes is better able to mitigate these false positives.

2. HowGBMcould be improved: conversely, GBM’s metric suffered from false negatives, or being
overly optimistic in predicting who would respond. As Figure A5 shows, this likely also stems
from the shifting base rates of nonresponse over time, with a relatively sharp increase in the
2019 wave (used to form the label) relative to the other waves.
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Figure A4: Algorithm versus simple decision rule: types of errors Focusing on the best‐performing algorithm,
GBM, we compare the types of errors the algorithm makes to errors from the rule‐based approach of previous
nonresponse status.
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Figure A5: Possible source of false negatives in model— rising base rate of nonresponse The figure, again
focusing on Type A, behaviorally‐driven nonresponse, shows how the leap in base rates may drive false neg‐
atives, or model‐predicted responders who go on to nonrespond.
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Ultimately, given the superior performance of GBM relative to the other binary classifiers and to a
simple, rule‐based approach, we used GBM to generate the final predictions.
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5.2 Randomization procedure
There are three variables that are randomly assigned: Ti ∈ {0, 1} is an indicator for whether the
unit receives the allocation they would have received under the Propensity‐Determined (versus
Propensity‐Independent)method;Zi ∈ {0, 1} is an indicator forwhether the individual is assigned to
receive any incentive amount in the allocation used; Ai ∈ {0, 2, 5, 10} is the dollar amount allocated
to each potential respondent. The procedure for the random assignment works as follows, with η̂i
referring to the 2021 nonresponse propensities estimated in the previous section:

1. CreateZT=1
i . Order each potential respondent from highest to lowest η̂i. Calculatem ≈ .3×n,

and assign the firstm− n individuals to ZT=1
i = 0 and the lastm to ZT=1

i = 1. This provides
the vectorZT=1: the assignment that would have obtained, had each unit been assigned using
Propensity‐Determined Allocation.

2. Create ZT=0
i . Define f() as a function that randomly sorts a vector, and set ZT=0

i = f(ZT=1
i ).

This provides the vector ZT=0: it is the assignment that would have obtained, had each unit
been assigned to incentives using Propensity‐Independent Allocation.

3. Create Ti. Sort individuals in order of their estimated propensity (randomly re‐sorting within
equal propensities) and form them into consecutive pairs. Within each pair, assign one indi‐
vidual to Ti = 1 and one to Ti = 0 with .5 probability. If there is an odd number of individuals,
randomize the last unit using a coin flip.

4. Create Zi. For all units for whom Ti = 1, set Zi = ZT=1
i , and for those for whom Ti = 0, set

Zi = ZT=0
i .

5. Create Ai. Among units where Zi = 1, randomly assign 50% to Ai = 10, 25% to Ai = 5, and
25% to Ai = 2. Assign the remaining sample for whom Zi = 0 to Ai = 0.

5.3 Constructing weights to adjust for nonresponse
For the exploratory analysis of the impact on variance discussed in Section 4.9.1, we will construct
weights that adjust for nonresponse separately for the treatment and control group. To do so, wewill
mimic part of the procedure AHS uses for its own weights construction, using the 2019 procedure
(U.S. Census Bureau and Department of Housing and Urban Development 2020). We will:

1. Use the following variables to define discrete cells:

(a) AHS administrative region (6 values)

(b) Interview mode: in person; not in person

(c) Type of housing unit: house/apartment/flat; mobile home; other

(d) 2013 metropolitan area at the county level: principal city; nonprincipal city; micropolitan
area; non‐CBSA area

(e) Quartiles of census block group median income

Within the cells defined by the same variables, the noninterview adjustment factor (NAF) within
each cell is defined as:

NAF =
Interviews+ noninterviews

Interviews

Then, cells are collapsed if they either contain fewer than 25 units or have an NAF > 2.
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